
Meet Charles, big data query advisor

Thibault Sellam
CWI

thibault.sellam@cwi.nl

Martin Kersten
CWI

martin.kersten@cwi.nl

ABSTRACT
In scientific data management and business analytics, the most in-
formative queries are a holy grail. Data collection becomes in-
creasingly simpler, yet data exploration gets significantly harder.
Exploratory querying is likely to return an empty or an overwhelm-
ing result set. On the other hand, data mining algorithms require
extensive preparation, ample time and do not scale well.
In this paper, we address this challenge at its core, i.e., how to query
the query space associated with a given database. The space con-
sidered is formed by conjunctive predicates. To express them, we
introduce the Segmentation Description Language (SDL). The user
provides a query. Charles, our query advisory system, breaks its
extent into meaningful segments and returns the subsequent SDL
descriptions. This provides insight into the set described and offers
the user directions for further exploration.
We introduce a novel algorithm to generate SDL answers. We eval-
uate them using four orthogonal criteria: homogeneity, simplicity,
breadth, and entropy. A prototype implementation has been con-
structed and the landscape of follow-up research is sketched.

1. INTRODUCTION
The data deluge in science and business challenges the way data is
turned into useful knowledge. A scientist or data analyst willing to
grind the data of e.g., seismology, astronomy, life sciences or web-
logs, must choose between running queries or rely on data mining
algorithms.
Querying a multi-terabytes database directly is the Spartan method.
It is done with SQL, or Map-Reduce tools such as Hive [18]. Often,
it is necessary to run the results through post-processing tools (e.g.,
R [1]). These tools are often implemented as domain specific web
applications (e.g., Orfeus [19] for seismology).
Data mining is an alternative to raw queries. Its vocation is to ex-
tract "knowledge" automatically from data sets. For instance, these
methods aim at discovering frequent patterns, clusters or classi-
fiers. Many different technologies have been proposed, based on
a single machine (Weka [10]) or Map-Reduce clusters (Pig Latin
[14]). However, scaling these algorithms to multiple gigabytes, let
alone terabytes, requires lots of preparation, time and skills.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2013.
6th Biennial Conference on Innovative Data Systems Research (CIDR ’13)
January 6-9, 2013, Asilomar, California, USA.

Charles

tonnage

1000 - 5000

type_of_boat

built

yard

departure_date

departure_harbour

cape_arrival

trip

master

Go	!

departure_harbor:	[Bantam,	Rammenkens]		
tonnage:	1000,	1150

departure_harbor:	[Surat,	Zeeland]		
tonnage:	1100,1150	

departure_harbor:	[Bantam,	Rammenkens]		
tonnage:	1151,1300

departure_harbor:	[Surat,	Zeeland]		
tonnage:	1151,	1300	

type_of_boatdeparture_harbordeparture_harbour,	tonnage

Figure 1: The interface of Charles

The key observation is that these methods are based on the same
underlying assumption: the user knows what he wants. He has a
precise objective for data analysis, although he may not know how
to reach it. An SQL query sent to a scientific database is already a
model, a hypothesis to be proofed by the database content. Once
the data is cleaned, analysis tools require precise queries, yet users
may not know what they want or how they want it. In order to break
this Gordian knot, we propose a new kind of exploration scheme.
Namely, for any non-trivially sized database, we query the query
space. The idea is to infer queries from data, instead of the oppo-
site. This data may be the whole database, but also the result of a
previous query. Thus, we answer queries by queries. This output
serves two purposes. First, it gives options for further exploration.
Second, it provides a compact summary of the data.

We introduce our prototype implementation, Charles. Charles pro-
poses and ranks several ways to query a set of tuples provided by a
user. This is illustrated by Figure 1. The left panel shows the user’s
query, the context. The top panel summarizes Charles’ ranked an-
swer list. Each pie-chart represents a set of queries, cutting the
database into disjoint pieces. We call them segmentations. The
largest panel displays the current selection.

Our aim is to isolate and describe large chunks of data in interac-
tion time. We present our algorithm, HB-cuts (Hierarchical-Binary
cuts). It splits the dataset into possibly equally wide pieces. These
splits are applied successively along dependent attributes. Thus,
each segmentation reveals one aspect of the data.

Charles is based on the following contributions:

• We introduce the Segmentation Description Language (SDL)
as a summarization language for database result sets.

• We present metrics to evaluate and rank segmentations.

• We develop a computationally tractable algorithm to gener-
ate segmentations, HB-cuts.

Charles can be positioned as a new member of emerging schemes
aimed at database summarization and interactive exploration. It
is implemented as a front-end for SQL systems. This simplifies
experimentation and portability of the code. Its development is un-
dertaken in the context of the MonetDB system.

The remainder of the paper is organized as follows. In Section 2,
we define SDL and expose the assumptions underlying our work.
Section 3 introduces the evaluation criteria for SDL query sets: ho-
mogeneity, simplicity, breadth and entropy. We describe in Section
4 how to generate segmentations. The current state of the prototype
and future research directions are discussed in Section 5.

2. CONCEPTS AND METHOD
Our first attempt starts with two restrictions. First, the dataset is
contained in one relation. Second, the input and output of our sys-
tem is based on a proprietary query language, called SDL. SDL
can only express conjunctions of predicates. The remainder of this
section presents the syntax and semantics of SDL. Let T be the re-
lation and Attr be one column. The literals a0,a1...,aK are values
from its value domain.

Definition 1. An SDL predicate C expresses either:
• a range constraint, denoted by Attr : [a0,a1]
• a set constraint, denoted by Attr : {a0,a1, ...,aK}
• no constraint, denoted by Attr :

Definition 2. An SDL query Q = (C0,C1, ...,CN) expresses a
conjunction of predicates over table T .

For instance, the query below is based on all three types of con-
straints:

(date : [1550,1650], tonnage :, type : {’ jacht’, ’ f luit’})

The result set of a query Q is denoted by R(Q), and |R(Q)| is its
cardinality. C(Q) is the cover |R(Q)|/|T |.

Our aim is to infer segmentations from the dataset D (⊂ T).

Definition 3. A segmentation is a set of queries S = {Q j} j∈[0,M]
wich defines a partition of D:
• for any (j,k) ∈ [0,M]2, j , k: R(Q j)∩R(Qk) = /0

•
⋃

j∈[0,M] R(Q j) = D

A few examples of segmentations are displayed in Figure 1. We
call the constituent queries segments.

We aim to explore the data interactively. First, the user specifies a
population he is interested in with a SDL statement (potentially the
whole database). The system then generates several segmentations
and presents them in a ranked list. Each answer describes one as-
pect of the data. The sets can be presented in a graphical way (e.g.
with TreeMaps or pie charts). The user can then select one SDL

query, and submit it for further exploration.

By convention, we choose to restrict the exploration to the columns
mentioned by the user. For instance, if a user submits the query
(boat_type :,date :,cape_arrival :), we will be oblivious to all the
other attributes in the database. Also, the answers generated by the
system are not necessarily based on all three columns.

3. QUALITY METRICS
Obviously, there are many ways to segment the search context. The
question is what constitutes a "good" segmentation. As we wish to
create informative vistas on the database, we propose four criteria:
homogeneity, simplicity, breadth, and entropy.

HOMOGENEITY Charles considers all attributes in the context to
be equally important. However, the segments it creates are based
on a few columns only. Among those, all items described by a
query should be "similar". Furthermore, distinct queries should
separate "different" items. Assigning a quantitative measure to this
property is still an open research challenge. The clustering litera-
ture proposes many measures, depending on the type of data. For
instance, metrics based on intra- and extra-cluster distance [9] are
well suited for low dimension quantitative data. Alternatively, in-
formation theory-based measurements provide good assessments
of similarity for categorical values. Other approaches may use the
spatial density in the neighbourhood of each point [8]. Each kind of
data distribution calls for a different evaluation strategy, and there
is to our knowledge no "universal" measure of clustering quality.
Besides, the calculations are data and compute intensive. They do
not scale well to the datawarehouses we have in mind.
As stated above, our aim is not to create an accurate cluster anal-
ysis of the data, but to summarize it by proposing queries. We
wish to explore the query space, not the data space. Therefore, we
purposely neglect to quantify homogeneity. However, the segmen-
tations should still be meaningful. In the next section, we present a
heuristic that creates "good enough" groups.

SIMPLICITY Charles presents results to the user as shown in Fig-
ure 1. It describes the SDL queries with text, and highlights visu-
ally how they cover the search context. As it should return legible
results, we keep the sets as simple as possible, i.e., each individual
SDL query should contain as few predicates as possible. We mea-
sure the complexity of a segmentation with the maximum number
of constraints among all of its queries. We label this criterion as
P(Si) for it can be calculated readily.

Principle 1. Simple segmentations are more legible.

BREADTH Our goal to aid the user in his understanding of the
database content implies that the segmentation should convey the
broadest semantics possible. We are more interested in a segmen-
tation that takes several attributes into account than a segmentation
on just one attribute. Therefore, we maximize the number of dis-
tinct columns across the queries of our segmentations, which we
call SDL breadth:

Principle 2. Broad segmentations are more informative.

This principle is not directly dependent on the previous one, sim-
plicity. It is possible to improve either one without degrading the
other. However, they act as safeguards against one another. The
first criterion tends to favor SDL queries with few constraints, if

any. The second principle imposes that the query carries more se-
mantic information.

ENTROPY Suppose we take a random point in the database. The
point may end up in the segment described by Q0, Q1, or any other.
The entropy of the segmentation describes the uncertainty of this
random variable. Its value is 0 when the set consists of one piece,
and it reaches logM when there are M perfectly balanced segments.

Definition 4. The entropy of segmentation S = {Q j} j∈[0,M] is

E(S) =−
M

∑
j=0

C(Q j) logC(Q j)

E(S) describes two aspects of the segmentations. First, it grows
with the the depth of the set, the number of SDL queries. Sec-
ond, if two sets contain the same number of queries, the entropy
favours the most balanced one. In fact, we assume that the user is
primarily interested in the most significant parts of the data, that is,
the queries with the highest covers. The most particular subpopu-
lations should appear later in the exploration process, as the user
refines his search. Therefore a perfect split would have segments
of the same size.

Principle 3. High entropy segmentations are deeper and more
balanced.

The principles create a 3-dimensional space to navigate or rank seg-
mentations. They hint at what the perfect segmentation looks like.
It has many queries, based on one attribute each, and the partitions
have the same size.

4. WHERE ARE THE BEST QUERIES ?
In this section, we propose a heuristic to generate segmentations in
a short amount of time: HB-cuts (Hierarchical Binary cuts). The
heuristic is a direct application of the principles we presented. The
basic idea is to split the data in two equal parts recursively. In
order to generate meaningful segmentations, we apply the splits
on dependent attributes only. Consider for instance the case illus-
trated by Figure 1. We may split the dataset in two on the attribute
type_of_boat. Then, each of the pieces may themselves be split in
two on the attribute tonnage, assuming that there is a dependency
between tonnage and type_of_boat. The process is repeated until a
threshold is reached. This creates semantically coherent segmenta-
tions with satisfying scores on the metrics exposed previously.

4.1 Primitives
In this section, we define three basic operations to derive segmen-
tations from a context query. They are all illustrated in Figure 2.

CUT This is the most important primitive of our algorithm. In-
tuitively, it splits a query in two equal pieces, along a predefined
attribute. We define it formally as follows:

Definition 5. Consider the query Q = (C0, . . . ,Ck, . . . ,CN).
mink, maxk, and medk are respecively the minimum, maximum and
median point of the values covered by Ck. We cut Q on the attribute
attrk as follows:

CUTattrk (Q) = {(Q,attk : [mink,medk[) ,(Q,attk : [medk,maxk])}

CUT_tonnage(A)

1000-2000
Fluit

2000-5000
Fluit

3000-5000
Jacht

1000-3000
Jacht

set B

1700-1750
1750-1780

set A

Fluit

Jacht

COMPOSE(A,B)

1744-1780
Fluit

1700-1760
Jacht

1700-1744
Fluit

1760-1780
Jacht

A x B

1700-1750
Jacht

1750-1780
Jacht

1750-1780
Fluit

1700-1750
Fluit

Figure 2: Cut, composition and product of segmentations

How the median point is calculated depends on the data type. For
integers, reals, or dates, we use the arithmetic median. For nominal
values, we have to make more arbitrary choices. We choose to sort
the values by order of occurrence for columns with low cardinality,
and alphabetically otherwise. Then, we set medk at the value for
which the accumulated frequency is the closest to 50%. In general,
the two resulting pieces may have different sizes. This will be taken
into account when we have to rank the segmentations later on.

We extend the CUT operation to segmentations: we cut each of the
queries in the set. This doubles the total number of partitions.

Definition 6. Consider the segmentation S = {Q0, . . . ,QL}. We
define the CUT operator as follows:

CUTattk (S) =CUTattk (Q0) ∪ . . .∪ CUTattk (QL)

COMPOSITION This operation is used to combine two segmen-
tations. Intuitively, it cuts the queries of one segmentation on the
attributes of the other.

Definition 7. Consider the segmentations S1 and S2. Suppose
that the queries of S2 are all based on the same set of attributes att1,
att2,. . ., attN . Then we have:

COMPOSE(S1,S2) =CUTatt1

(
CUTatt2

(
. . .CUTattN (S1) . . .

))
PRODUCT This operator is another way to combine two segmen-
tations. Consider the example in Figure 2. The sets A and B are
both based on two queries. We create a new segmentation A×B by
intersecting each piece of the first with each piece of the latter, thus
creating 4 queries.

Definition 8. Consider S1 = {Q0
1, . . . ,Q

K
1 } and

S2 = {Q0
2, . . . ,Q

L
2}. We define the SDL product operator ×:

S1×S2 = {(Qi
1,Q

j
2) | (i, j) ∈ [0,K]× [0,L]}

The SDL product has a notable feature: it can give a hint about
the dependency between two variables. If the product of two bal-
anced segmentations is also balanced, then there is no dependency

att 4

att 3

att 2

att 1 att 1, att 2, att 3

No split

att 2, att 3

att 5

att 4, att 5

Figure 3: Example execution of HB-cuts

between their variables. The example of Figure 2 shows a depen-
dence between the type of boat and the departure date. This can be
quantified with our entropy criterion:

Proposition 1. Consider two segmentations S1 = {Q0
1, . . . ,Q

K
1 }

and S2 = {Q0
2, . . . ,Q

L
2}. We pick one random tuple in the database.

X1 (resp. X2) is the random variable which describes its partition in
S1 (resp. S2). X1 and X2 are independent iff

E(S1×S2) = E(S1)+E(S2)

The quotient E(S1× S2)/(E(S1)+E(S2)) decreases with the de-
gree of dependence between X1 and X2. We label it INDEP(S1,S2).

4.2 Heuristics
The algorithm is initialized by cutting the context query on each
of its attributes. For N columns, this will create a candidate list of
N binary segmentations. Among these candidates, we detect the
most dependent couple of segmentations and compose them. The
procedure is then repeated until a stopping condition is met. All
intermediate results we encounter are stored and returned by order
of entropy once the algorithm is done. Figure 3 shows an example
of execution for a query with 5 attributes. The procedure generates
and returns 8 segmentations.

To retrieve the most dependent couple, we enumerate every pos-
sible set {S1,S2} from the candidate list. For each of these, we
evaluate the product S1 × S2 and calculate INDEP(S1,S2). As
stated previously, this value decreases with the dependence of S1
and S2. If S∗1 and S∗2 yield the smallest value, we replace them by
COMPOSE(S∗1,S

∗
2) in the candidate list, then repeat.

As the algorithm is executed, the level of dependence between can-
didates degrades and the segmentations contain more and more
SDL queries. Therefore, we propose to set two stopping crite-
ria. First, we should not group independent attributes in the same
queries. Therefore a maximal value should be set on the fraction
INDEP(S1,S2), possibly through statistical hypothesis testing. In
our case, a threshold of 0.99 gave statisfying results with most data
sets. Second, there is a limit to the amount of information that a

1: function HB CUTS(query, maxIndep, maxDepth)
2: cand←{}
3: for i← 0,nbAttributes(query) do
4: cand← cand∪{CUTattri(query)}
5: end for
6:
7: newSeg←{}
8: ind← 0, dep← 0
9: out put←{}

10: while true do
11: {S∗1,S∗2}← argminS1,S1∈cand INDEP(S1,S2)
12: newSeg←COMPOSE(S∗1,S

∗
2)

13: ind← INDEP(S∗1,S
∗
2)

14: dep← depth(newSeg)
15: if ind ≥ maxIndep ‖ dep≥ maxDepth then
16: break
17: else
18: cand← cand∪{newSeg}
19: cand← cand−{S∗1,S∗2}
20: out put← out put ∪{S∗1,S∗2}
21: end if
22: end while
23: out put← out put ∪ cand
24:
25: return sort(out put)
26: end function

Figure 4: Segmentation algorithm

user can grasp: we consider that a pie chart with more than a dozen
slices is hard to read. Therefore, we set an upper bound on the num-
ber of queries in a segmentation. Figure 4 shows the pseudo-code
for our algorithm.

5. CURRENT AND FUTURE DIRECTIONS
We implemented our query space exploration scheme in a proof-
of-concept system, named Charles. In this section, we highlight
some of the challenges encountered along the way. Next, we char-
ter the development and research road-map towards a full-blown
and scalable version.

5.1 Charles’ Implementation
Charles has been implemented as a C application on top of Mon-
etDB. The GUI shown in Figure 1 has been implemented as a stan-
dalone program in Python. It can be turned into a fancy web-
application readily. Each SDL set is represented by a pie-chart
where each slice is represented by an SDL query. The search con-
text is presented in the leftmost panel. It enumerates the columns
of interest and any a priori defined value constraints. The top panel
presents a ranked list of candidate sets suggested by Charles. Se-
lecting one opens it for detailed inspection and interaction in the
main panel.

The actual algorithm poses two challenges: the explosion of the
search space and the performance of the database operations. The
search space explosion is directly related to the number of attributes
considered in the search context (horizontal scalability). The per-
formance of database operations depends on the number of tuples
(vertical scalability).

Horizontal scalability is the hardest to achieve because the search
space grows exponentially. However, some optimizations are pos-
sible. For instance, the calculations of SDL products and entropy
can be reused from one iteration to the next. A safety line comes
from the visualization. A pie-chart with more than a dozen slices is
difficult to read. Also, a large number of candidates is overwhelm-
ing. This sets an upper bound on the size of the search space.

Vertical scalability depends a lot on the back-end choices. Two
types of operations are performed: median calculations and counts
over predicates. The former is not commonly supported by sys-
tems. Overall, we favor OLAP technologies. As we cannot know
which columns will be queried, creating indices a priori is not pos-
sible. Therefore, column-based systems such as MonetDB [13] are
well for suited Charles’ workloads.

5.2 Broader perspectives
Our procedure is based on four steps: initial candidates generation,
derivation of the segmentations, ranking and visualization. Each of
these steps could be generalized.

First, we only consider median cuts. This is a serious limitation.
Assume we split the domain of an attribute size. This attribute fol-
lows a Gaussian distribution. With the current state of the system,
there is no way to obtain a pie-chart displaying the second third
of the population. However, this subset is very dense and may be
very interesting for a user. We have to develop support for other
quantiles, along with selection rules.

Also, our heuristic relies on a heavy restriction: all queries in an
segmentation are based on the same attributes. It would be interest-
ing to consider other options. For instance, we could cut each piece
of a segmentation on a potentially different attribute. The main is-
sue with this approach is the explosion of the search space. This
may be tackled with randomized algorithms. Another research di-
rection is to design a generation engine for lazy segmentation gen-
eration. Currently, Charles generates all possible answers to a user
query in one go, then returns them. It may be beneficial to spread
the computation time: the system would only generate a small set
of queries, and create more upon request.

The overall evaluation and ranking process can be greatly improved
with other types of knowledge. We do not use any notion of "inter-
estingness" or "surprise". Also, we did not consider the clustering
quality measures offered by the data mining community. We may
gain from incorporating such notions. It is however unclear yet
which measure can be used, and how to include them into our cur-
rent evaluation scheme.

Two improvements for the visualization scheme present themselves
readily. First, the display could be clarified with hierarchical visu-
alizations, such as tree-maps or multi-level pies. Second, the only
information that Charles gives about the segments is their counts.
It may be interesting to display more. For instance, the distribution
of some attributes could be plotted, with uni- or multivariate rep-
resentations. However, determining which attributes to display is
almost as difficult as choosing the queries to illustrate.

Finally, the implementation of Charles could benefit from the in-
corporation of sampling strategies. The calculation of medians is
a major bottleneck. However, not all tuples are necessary to give
good results.

6. RELATED WORK
We identify four ways to generate interesting queries from a database
in the literature: database summarization, faceted search, query
recommandation and subspace clustering.

6.1 Database summarization
Database summarization appears as a contender for Charles. For
instance, Yang et al.[21] introduce a method to return reduced ver-
sions of relational data. The result is less precise, but gives hints
about the actual content of the database. It can be used as input for
the knowledge discovery processes. In the data mining community,
Mampaey et al. [12] propose to summarize transaction data with a
few significant item-sets, chosen with information theoretical prin-
ciples. The objective of these methods is similar to ours. How-
ever, our approach is different. These methods reduce the number
of items, but do not give any hint for the analysis. Our approach
tries to separate and rank different views over the data. Each seg-
mentation highlights one aspect of the data. Also, we have strong
requirements on the response time, and Charles should not require
any preparation. This is not the priority for these works.

6.2 Faceted search
The information retrieval community has been proposing several
interfaces for user-friendly querying of large repositories. Among
those, faceted search is the closest to ours. It has been adopted
by many popular e-commerce websites. One of the earliest engines
for SQL databases is Flamenco [7]. The user enters a query, usually
keyword-based. The system does not return all the results. Instead,
it selects a few significant items and outputs them. In a separate
window, it displays several attributes such as price or brand. They
are the facets. For each of these attributes several value ranges are
proposed. The user refines his selection by choosing one of these
categories.
Faceted search is an active research field, and several authors have
been looking into extending it for OLAP analysis. Wu et al. [20]
embed it into a wider framework called KDAP (Keyword-Driven
Analytical Processing). This framework generates many queries
from a keyword, such as joins between facts and dimension tables.
The results of these queries are then aggregated and organized in
facets. Recently, Ben-Yitzhak et al. [3] have been working on ex-
tending the initial model. Usually, the facets come with counts for
each subcategory. This gives an idea of the content of the database
to the user. This could be replaced by more complex aggregations,
such as selections, sums or averages.
Somehow, faceted search also aims at producing queries from tu-
ples. However, in all the aformentioned cases, the user still has to
build the queries. The facets are merely building blocks.
One of the main challenges of faceted search is the facet selec-
tion problem. While the data can have many attributes, only a few
facets can be presented to the user. Which are the most interest-
ing ones ? Dash et al. propose to return the most surprising ones
[6]. They reveal data for which the distribution differs significantly
from an expected value. This variant of faceted search is very close
to our work: the system helps the user by identifying interesting
subgroups. However, our notion of interest is very different. We
try to summarize the general case, while Dash et al. focus on un-
expected patterns. DynaCet [16] is another attempt to guide the
exploration. The system provides facets such that any tuple can be
reached with a minimal number of queries. It can build a decision
tree over the whole data set, or only a few levels each time the user
drills in. The objective of this work is very different from ours.
DynaCet helps the user identify precise tuples of interest: this is a
search scenario. We seek to generate summaries of the data. Also,

as in most faceted search applications, all the facets are based on
one attribute only. Our system is the opposite as it maximizes the
number of columns involed in the segmentations.

6.3 Query recommendation
Several authors have proposed query recommendation algorithms.
A common approach is to use the query log of the database. For
instance, Chatzopoulou et al. [5] assume that if two users have a
similar querying behavior, we can use the log of one to recommend
queries to the other. They draw inspiration from collaborative fil-
tering systems proposed on the Web. SnipSuggest [11] uses the
same approach to generate context-aware recommendations: the
user starts typing a query, then the system proposes several com-
pletions. The more a user writes, the more accurate the suggestions
will be. Our work does not use the query log, it is based on sta-
tistical properties of the data. Therefore, we can drop the assump-
tion that several experts have been independently using the same
database for the exact same purpose.
The work of Sarawagi et al. [17] is closer to ours. It recom-
mends interesting regions of the data based on statistics. However,
there are two main differences. First, it is based on exceptional
behaviours. An anticipated value of each observation can be cal-
culated by creating a statistical model of the neighbourhood. Their
system compares this expectated value to the observed one, and re-
ports the abnormal deviations. As stated in the previous section, we
are interested in the general case, not the exceptions. Second, the
method of Sarawagi et al. targets data cubes exclusively.

6.4 Subspace clustering
Traditional clustering considers that all the dimensions are equally
important. However, this assumption does not hold with many real
life datasets. Also, a high number of dimensions tends to make
items equidistant [4]. Subspace clustering addresses both of these
problems. These methods detect clusters in various sub-spaces of
the data. Therefore, each cluster is returned along with the subset
of dimensions on which its tuples are similar. A review of these
algorithms was written by Parsons et al. [15].
The first algorithm of this field is CLIQUE [2]. It splits each di-
mension in bins and detects the densest. Then, it explores all the
possible combinations of bins. This creates cells of higher dimen-
sion, that can also be combined. The results can be expressed as
a set of hyper-rectangles written in Disjunctive Normal Form such
as ((30 < age < 50)∧ (5 < salary < 8))∨ ((40 < age < 60)∧ (2 <
salary < 6)). This is similar to SDL partitions. Both approaches
aim at partitioning the data in interesting subsets and express the
results as queries. Also both approaches start with single attribute
splits then combine them to generate new partitions. However, the
objective is different. CLIQUE aims at discovering high density
sub-spaces. We generate instant and general hints about the con-
tent of the data.

7. SUMMARY AND OUTLOOK
Enabling fast and intuitive data exploration is the Grand Challenge
of the Big Data era. Brute-force parallel processing techniques such
as Map-Reduce on Hadoop clusters push the wall, but do not break
it. A paradigm shift is needed.
To bring out the knowledge hidden in the data, we propose to ex-
plore the barren landscape of database queries. Our proof-of-concept
system, Charles, probes a query space delimited by the user and re-
turns the most promising candidates. We believe this opens up am-
ple opportunities for innovative theoretical, algorithmic, and sys-
tems research.

8. ACKNOWLEDGMENTS
This work was supported by the Dutch national program
COMMIT.

9. REFERENCES
[1] The R Project for Statistical Computing.

http://www.r-project.org/index.html.
[2] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan.

Automatic subspace clustering of high dimensional data for
data mining applications. SIGMOD Rec., 1998.

[3] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel,
A. Neumann, S. Ofek-Koifman, D. Sheinwald, E. Shekita,
B. Sznajder, and S. Yogev. Beyond basic faceted search. In
Proc. WSDM, 2008.

[4] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is "nearest neighbor" meaningful? ICDT, 1999.

[5] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[6] D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. Lohman.
Dynamic faceted search for discovery-driven analysis. In
CIKM, 2008.

[7] J. English, M. Hearst, R. Sinha, K. Swearingen, and K. Lee.
Flexible search and navigation using faceted metadata.
Technical report, University of Berkeley, 2002.

[8] M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based
algorithm for discovering clusters in large spatial databases
with noise. In SIGKDD, 1996.

[9] G. Gan, C. Ma, and J. Wu. Data clustering. SIAM, 2007.
[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. Witten. The weka data mining software: an update.
SIGKDD Expl., 2009.

[11] N. Khoussainova, Y. Kwon, M. Balazinska, and D. Suciu.
Snipsuggest: context-aware autocompletion for sql. Proc.
VLDB endow., 2010.

[12] M. Mampaey, N. Tatti, and J. Vreeken. Tell me what i need
to know: succinctly summarizing data with itemsets. In
SIGKDD, 2011.

[13] S. Manegold, M. Kersten, and P. Boncz. Database
architecture evolution: mammals flourished long before
dinosaurs became extinct. Proc. VLDB endow., 2009.

[14] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing. In Proc. SIGMOD, 2008.

[15] L. Parsons, E. Haque, and H. Liu. Subspace clustering for
high dimensional data: a review. SIGKDD Expl., 2004.

[16] S. Roy, H. Wang, U. Nambiar, G. Das, and M. Mohania.
Dynacet: Building dynamic faceted search systems over
databases. In ICDE, 2009.

[17] S. Sarawagi, R. Agrawal, and N. Megiddo. Discovery-driven
exploration of olap data cubes. EDBT, 1998.

[18] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive: a
warehousing solution over a map-reduce framework. Proc.
VLDB endow., 2009.

[19] T. van Eck. The orfeus seismological software library.
Seismological Research Letters, 1997.

[20] Y. Wu P., Sismanis and B. Reinwald. Towards keyword-
driven analytical processing. In Proc. SIGMOD, 2007.

[21] X. Yang, C. Procopiuc, and D. Srivastava. Summarizing
relational databases. Proc. VLDB endow., 2009.

